By Topic

Maximum Key Size and Classification Performance of Fuzzy Commitment for Gaussian Modeled Biometric Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kelkboom, E.J.C. ; Philips Res., Eindhoven, Netherlands ; Breebaart, J. ; Buhan, I. ; Veldhuis, R.

Template protection techniques are used within biometric systems in order to protect the stored biometric template against privacy and security threats. A great portion of template protection techniques are based on extracting a key from, or binding a key to the binary vector derived from the biometric sample. The size of the key plays an important role, as the achieved privacy and security mainly depend on the entropy of the key. In the literature, it can be observed that there is a large variation on the reported key lengths at similar classification performance of the same template protection system, even when based on the same biometric modality and database. In this work, we determine the analytical relationship between the classification performance of the fuzzy commitment scheme and the theoretical maximum key size given as input a Gaussian biometric source. We show the effect of the system parameters such as the biometric source capacity, the number of feature components, the number of enrolment and verification samples, and the target performance on the maximum key size. Furthermore, we provide an analysis of the effect of feature interdependencies on the estimated maximum key size and classification performance. Both the theoretical analysis, as well as an experimental evaluation using the MCYT fingerprint database showed that feature interdependencies have a large impact on performance and key size estimates. This property can explain the large deviation in reported key sizes in literature.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:7 ,  Issue: 4 )
Biometrics Compendium, IEEE