By Topic

FPGA Implementation of an Evolutionary Algorithm for Autonomous Unmanned Aerial Vehicle On-Board Path Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kok, J. ; Australian Research Centre for AerospaceAutomation, Queensland, Australia ; Gonzalez, L.F. ; Kelson, N.

In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application-specific evolutionary algorithm (EA) implemented entirely on a field-programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, makes it an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and 3-D terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment, and mission profiles. The architecture has been successfully synthesized for a target Xilinx Virtex-4 FPGA platform with 32% logic slice utilization. Results obtained from case studies for a small UAV helicopter with environment derived from light-detection and ranging data verify the effectiveness of the proposed FPGA-based pathplanner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:17 ,  Issue: 2 )