By Topic

Low-Variance Multitaper MFCC Features: A Case Study in Robust Speaker Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kinnunen, T. ; Sch. of Comput., Univ. of Eastern Finland, Joensuu, Finland ; Saeidi, R. ; Sedlak, F. ; Kong Aik Lee
more authors

In speech and audio applications, short-term signal spectrum is often represented using mel-frequency cepstral coefficients (MFCCs) computed from a windowed discrete Fourier transform (DFT). Windowing reduces spectral leakage but variance of the spectrum estimate remains high. An elegant extension to windowed DFT is the so-called multitaper method which uses multiple time-domain windows (tapers) with frequency-domain averaging. Multitapers have received little attention in speech processing even though they produce low-variance features. In this paper, we propose the multitaper method for MFCC extraction with a practical focus. We provide, first, detailed statistical analysis of MFCC bias and variance using autoregressive process simulations on the TIMIT corpus. For speaker verification experiments on the NIST 2002 and 2008 SRE corpora, we consider three Gaussian mixture model based classifiers with universal background model (GMM-UBM), support vector machine (GMM-SVM) and joint factor analysis (GMM-JFA). Multitapers improve MinDCF over the baseline windowed DFT by relative 20.4% (GMM-SVM) and 13.7% (GMM-JFA) on the interview-interview condition in NIST 2008. The GMM-JFA system further reduces MinDCF by 18.7% on the telephone data. With these improvements and generally noncritical parameter selection, multitaper MFCCs are a viable candidate for replacing the conventional MFCCs.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 7 )
Biometrics Compendium, IEEE