Cart (Loading....) | Create Account
Close category search window
 

Dynamic Resource Allocation in MIMO-OFDMA Systems with Full-Duplex and Hybrid Relaying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ng, D.W.K. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Lo, E.S. ; Schober, R.

In this paper, we formulate a joint optimization problem for resource allocation and scheduling in full-duplex multiple-input multiple-output orthogonal frequency division multiple access (MIMO-OFDMA) relaying systems with amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Our problem formulation takes into account heterogeneous data rate requirements for delay sensitive and non-delay sensitive users. We also consider a theoretically optimal hybrid relaying scheme as a performance benchmark, which allows a dynamic selection between AF relaying and DF relaying protocols with full-duplex and half-duplex relays. We show that under some mild conditions the optimal transmitter precoding and receiver post-processing matrices jointly diagonalize the MIMO-OFDMA relay channels for all considered relaying protocols transforming the resource allocation and scheduling problem into a scalar optimization problem. Dual decomposition is employed to solve this optimization problem and a distributed iterative resource allocation and scheduling algorithm with closed-form power and subcarrier allocation is derived. Simulation results not only illustrate that the proposed distributed algorithm converges to the optimal solution in a small number of iterations, but also demonstrate the potential performance gains achievable with full-duplex relaying protocols.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.