By Topic

Discriminative Multimanifold Analysis for Face Recognition from a Single Training Sample per Person

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiwen Lu ; Advanced Digital Sciences Center, Singapore ; Yap-Peng Tan ; Gang Wang

Conventional appearance-based face recognition methods usually assume that there are multiple samples per person (MSPP) available for discriminative feature extraction during the training phase. In many practical face recognition applications such as law enhancement, e-passport, and ID card identification, this assumption, however, may not hold as there is only a single sample per person (SSPP) enrolled or recorded in these systems. Many popular face recognition methods fail to work well in this scenario because there are not enough samples for discriminant learning. To address this problem, we propose in this paper a novel discriminative multimanifold analysis (DMMA) method by learning discriminative features from image patches. First, we partition each enrolled face image into several nonoverlapping patches to form an image set for each sample per person. Then, we formulate the SSPP face recognition as a manifold-manifold matching problem and learn multiple DMMA feature spaces to maximize the manifold margins of different persons. Finally, we present a reconstruction-based manifold-manifold distance to identify the unlabeled subjects. Experimental results on three widely used face databases are presented to demonstrate the efficacy of the proposed approach.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 1 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal