By Topic

Effective Video Multicast Using SVC with Heterogeneous User Demands over TDMA-Based Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin-Bum Hwang ; Dept. of Ind. & Syst. Eng., KAIST, Daejeon, South Korea ; Lee, C.Y.

We provide an effective video multicast framework over time division multiple access (TDMA)-based wireless mesh networks (WMNs). Heterogeneous user demand is considered where each multicast receiver has its own video quality demand. In video multicasting, different relay nodes in the same multicast tree may have different transmission rates by utilizing scalable video coding (SVC). Considering this distinguishing characteristic of video multicasting, the proposed multicast framework provides effective multicast routing, scheduling, and rate allocation algorithms. The purpose of the multicast routing and scheduling is to obtain a minimum length schedule which satisfies given quality demands of receivers. If the schedule is not feasible even with its minimum length due to the limited number of time slots in the network, rate allocation algorithm adjusts the transmission rates of relay nodes to generate a feasible schedule. The algorithm is designed to maximize the minimum utility of multicast receivers. Simulation results show that the proposed multicast routing and scheduling algorithms outperform existing schemes in terms of schedule length. The minimum utility is improved up to 30 percent by the proposed rate allocation algorithm compared to the existing method.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 5 )