By Topic

Efficient Genotype Elimination via Adaptive Allele Consolidation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
De Francesco, N. ; Dipt. di Ing. dell''Inf.: Elettron., Inf., Telecomun, Univ. di Pisa, Pisa, Italy ; Lettieri, G. ; Martini, L.

We propose the technique of Adaptive Allele Consolidation, that greatly improves the performance of the Lange-Goradia algorithm for genotype elimination in pedigrees, while still producing equivalent output. Genotype elimination consists in removing from a pedigree those genotypes that are impossible according to the Mendelian law of inheritance. This is used to find errors in genetic data and is useful as a preprocessing step in other analyses (such as linkage analysis or haplotype imputation). The problem of genotype elimination is intrinsically combinatorial, and Allele Consolidation is an existing technique where several alleles are replaced by a single "lumped” allele in order to reduce the number of combinations of genotypes that have to be considered, possibly at the expense of precision. In existing Allele Consolidation techniques, alleles are lumped once and for all before performing genotype elimination. The idea of Adaptive Allele Consolidation is to dynamically change the set of alleles that are lumped together during the execution of the Lange-Goradia algorithm, so that both high performance and precision are achieved. We have implemented the technique in a tool called Celer and evaluated it on a large set of scenarios, with good results.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 4 )