By Topic

Fast Local Search for Unrooted Robinson-Foulds Supertrees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chaudhary, R. ; Dept. of Comput. Sci., Iowa State Univ., Ames, IA, USA ; Burleigh, J.G. ; Fernandez-Baca, D.

A Robinson-Foulds (RF) supertree for a collection of input trees is a tree containing all the species in the input trees that is at minimum total RF distance to the input trees. Thus, an RF supertree is consistent with the maximum number of splits in the input trees. Constructing RF supertrees for rooted and unrooted data is NP-hard. Nevertheless, effective local search heuristics have been developed for the restricted case where the input trees and the supertree are rooted. We describe new heuristics, based on the Edge Contract and Refine (ECR) operation, that remove this restriction, thereby expanding the utility of RF supertrees. Our experimental results on simulated and empirical data sets show that our unrooted local search algorithms yield better supertrees than those obtained from MRP and rooted RF heuristics in terms of total RF distance to the input trees and, for simulated data, in terms of RF distance to the true tree.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 4 )