By Topic

Recent advances in MEMS sensor technology-mechanical applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khoshnoud, F. ; Univ. of Hertfordshire, Hatfield, UK ; de Silva, C.W.

This is the second of a three-part series on micro-electromechanical systems (MEMS) sensor technology. In the first part, a general introduction to MEMS sensing was given, including its underlying principles [1]. Biomedical MEMS sensors were also described by reviewing the principles of bio-sensing and describing a typical set of biologically inspired sensors. In this part, mechanical sensors for displacement, acceleration, impact, vibration, force and torque, and stress and strain are discussed. Various applications of these sensors include high-g measurement, study of golf swing dynamics, vibration control of space inflatable structures, force and torque measurement in micro-robots, bone stress monitoring, metrology, and characterization of nano-scale structures. Some related technologies of MEMS sensors are discussed including compensation for environmental effects, the Casimir effect, and harvesting of energy for self-powered sensors. Also, the subject of sensor selection is addressed. Part 3 of the series will present MEMS sensing in the thermo-fluid and electromagnetic domains.

Published in:

Instrumentation & Measurement Magazine, IEEE  (Volume:15 ,  Issue: 2 )