By Topic

Z-Shaped MEMS Thermal Actuators: Piezoresistive Self-Sensing and Preliminary Results for Feedback Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jing Ouyang ; Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA ; Yong Zhu

Feedback control of microactuators holds potential to significantly improve their performance and reliability. A critical step to realize the feedback control of microactuators is feedback sensing. In this paper, we report the feasibility of using a Z-shaped thermal actuator (ZTA) as a simultaneous force or displacement sensor. An in situ scanning electron microscope nanomanipulation process is used to characterize the piezoresistive response of ZTAs, which shows that ZTAs can be used as piezoresistive sensors. The experimental results agree very well with multiphysics (electric-thermal-structural-piezoresistive) simulations. A new feedback scheme is further explored, where the ZTA is treated as a two-input (applied current and external force) and two-output (displacement and electric resistance) system. Based on the calibrated relationships between the inputs and the outputs, a feedback system is developed, which can simultaneously sense the external force and generate updated current to actuate the ZTA to the desired position. We demonstrate preliminary results of this feedback control by holding the ZTA at a constant position under various external forces. The device and method presented in this paper are valuable for a range of microelectromechanical systems applications, including on-chip nanoscale mechanical testing and nanopositioning.

Published in:

Journal of Microelectromechanical Systems  (Volume:21 ,  Issue: 3 )