By Topic

High-Angular-Range Electrostatic Rotary Stepper Micromotors Fabricated With SOI Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Marc Stranczl ; Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Edin Sarajlic ; Hiroyuki Fujita ; Martin A. M. Gijs
more authors

Flexible bearings are advantageous for microelectromechanical systems as they enable precise, accurate, repeatable, and reliable motion without frictional contact. Based on the principle of a rotary folded-beam suspension, we have designed, fabricated, modeled, and characterized an electrostatic rotary stepper micromotor in silicon. Using 3-D finite-element analysis simulations that were corroborated by extensive characterizations performed in quasi-static, transient, and dynamic regimes, we could establish a consistent electromechanical model of the motor. In particular, dynamic nonlinearities such as superharmonic and subharmonic resonances are well described by the proposed model. Two prototypes of monolithic three-phase stepper motors have been fabricated with standard silicon-on-insulator (SOI) technology, using either a two-mask or a single-mask process. The two-mask SOI motor has a rotor diameter of 1.4 mm and has an angular range of 30° (±15°) for a 65-V (130 Vpp) sinusoidal actuation. The single-mask SOI motor has a rotor diameter of 1.8 mm and incorporates a differential capacitive sensor for angular position measurement. It reaches a maximum angular speed of 1°/ms and has an angular range of 30° for a 23-V (46 Vpp) sinusoidal actuation. The exceptional performance of the motor and the demonstration of successful capacitive sensing make it suitable for use as an active joint module in future microrobotic applications.

Published in:

Journal of Microelectromechanical Systems  (Volume:21 ,  Issue: 3 )