By Topic

Electrostatically tunable piezoelectric-on- silicon micromechanical resonator for real-time clock

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Serrano, D.E. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Tabrizian, R. ; Ayazi, F.

This paper reports on the design, fabrication, and characterization of a small form factor, piezoelectrically transduced, tunable micromechanical resonator for real-time clock (RTC) applications (32.768 kHz). The device was designed to resonate in an out-of-plane flexural mode to simultaneously achieve low-frequency operation and reduced motional resistance in a small die area. Finite element simulations were extensively used to optimize the structure in terms of size, insertion loss, spurious-mode rejection, and frequency tuning. Microresonators with an overall die area of only 350 × 350 μm were implemented on a thin-film AlN on silicon-on-insulator (SOI) substrate with AlN thickness of 0.5 μm, device layer of 1.5 μm, and an electrostatic tuning gap size of 1 μm. A frequency tuning range of 3100 ppm was measured using dc voltages of less than 4 V. This range is sufficient to compensate for frequency variations of the microresonator across temperature from -20°C to 100°C. The device exhibits low motional impedance that is completely independent of the frequency tuning potential. Discrete electronics were used in conjunction with the resonator to implement an oscillator, verifying its functionality as a timing reference.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:59 ,  Issue: 3 )