By Topic

Variational Learning for Finite Dirichlet Mixture Models and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wentao Fan ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada ; Bouguila, N. ; Ziou, D.

In this paper, we focus on the variational learning of finite Dirichlet mixture models. Compared to other algorithms that are commonly used for mixture models (such as expectation-maximization), our approach has several advantages: first, the problem of over-fitting is prevented; furthermore, the complexity of the mixture model (i.e., the number of components) can be determined automatically and simultaneously with the parameters estimation as part of the Bayesian inference procedure; finally, since the whole inference process is analytically tractable with closed-form solutions, it may scale well to large applications. Both synthetic and real data, generated from real-life challenging applications namely image databases categorization and anomaly intrusion detection, are experimented to verify the effectiveness of the proposed approach.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )