Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

On-Road Multivehicle Tracking Using Deformable Object Model and Particle Filter With Improved Likelihood Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Niknejad, H.T. ; Toyota Technol. Inst., Nagoya, Japan ; Takeuchi, A. ; Mita, S. ; McAllester, D.

This paper proposes a novel method for multivehicle detection and tracking using a vehicle-mounted monocular camera. In the proposed method, the features of vehicles are learned as a deformable object model through the combination of a latent support vector machine (LSVM) and histograms of oriented gradients (HOGs). The detection algorithm combines both global and local features of the vehicle as a deformable object model. Detected vehicles are tracked through a particle filter, which estimates the particles' likelihood by using a detection scores map and template compatibility for both root and parts of the vehicle while considering the deformation cost caused by the movement of vehicle parts. Tracking likelihoods are iteratively used as a priori probability to generate vehicle hypothesis regions and update the detection threshold to reduce false negatives of the algorithm presented before. Extensive experiments in urban scenarios showed that the proposed method can achieve an average vehicle detection rate of 97% and an average vehicle-tracking rate of 86% with a false positive rate of less than 0.26%.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )