By Topic

Understanding the Doubly Fed Induction Generator During Voltage Dips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marques, G.D. ; Dept. of Electr. & Comput. Eng., Tech. Univ. Lisbon, Lisbon, Portugal ; Sousa, D.M.

The doubly fed induction generator (DFIG) is normally controlled with stator-flux orientation. The DFIG is a poorly damped system with a natural frequency near the grid frequency. This leads to natural oscillations on the stator flux and on other variables. When voltage dips occur, there are oscillations on the stator flux that produces electromotive forces and consequently disturbances on the rotor currents. This paper presents a comprehensive study of the DFIG during voltage dips. The method presented in this paper, valid for symmetric and for asymmetric voltage dips, is based on the classical model of the induction machine with stator flux orientation and neglects only a small part of the cross-coupling terms. The response depends on the design methodology of the proportional-integral inner controllers. Analytical, simulation, and experimental results are shown. The analysis and results can be divided into two sets depending if the voltage dip magnitude is smaller or deeper than 0.5 p.u.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 2 )