By Topic

Design, Fabrication, and Operating Test of the Prototype HTS Electromagnet for EMS-Based Maglev

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Chang Young Lee ; Korea Railroad Res. Inst., Uiwang Si, South Korea ; Jung Min Jo ; Young Jae Han ; Yoon Do Chung
more authors

The prototype high-Tc superconducting electromagnet (HTS-EM) for high-speed EMS Maglev was successfully demonstrated in EMS system up to the vehicle running speed of 500 km/h. The EM was designed to interface with the existing propulsion system used in the German high-speed Maglev. The rating levitation force of the EM was designed to correspond to the weight of the EM at a 20 mm levitation gap. Electromagnetic forces were simulated and compared with the test results in order to verify the design feasibility of the HTS-EM. Operating tests revealed that the HTS-EM was fully operational in zero-power control mode. However, the operating current of the HTS coil was affected by the control current when the guideway disturbance occurred. The design feasibility and operability of the HTS-EM was verified in the study.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )