By Topic

A D-Band Cascode Amplifier With 24.3 dB Gain and 7.7 dBm Output Power in 0.13 \mu m SiGe BiCMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Debin Hou ; State Key Lab. of Millimeter Waves, Southeast University, Nanjing, China ; Yong-Zhong Xiong ; Wang-Ling Goh ; Wei Hong
more authors

This letter describes a D-band 3-stage cascode amplifier developed using the IHP 0.13 μm SiGe BiCMOS technology. The amplifier is implemented with low-loss transformer for inter-stage matching and single-to-differential transformation. The large-signal characteristics of the cascode HBT configuration are used to optimize the bias condition for highest output power and gain performance. A measured amplifier achieves a peak power gain of 24.3 dB, with a 3 dB bandwidth of 20 GHz centered at 130 GHz. The amplifier exhibits a saturated output power of 7.7 dBm and an output 1 dB gain compression point of 6 dBm with a power consumption of 84 mW. The measured noise figure is 6.8 dB at 130 GHz and stays under 8 dB over the 3 dB bandwidth. To the best of our knowledge, the proposed amplifier exhibits the highest gain and output power among the silicon-based D-band amplifiers reported so far.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:22 ,  Issue: 4 )