Cart (Loading....) | Create Account
Close category search window
 

Autonomic Parameter Tuning of Anomaly-Based IDSs: an SSH Case Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sperotto, A. ; Centre for Telematics & Inf. Technol., Univ. of Twente, Enschede, Netherlands ; Mandjes, M. ; Sadre, R. ; de Boer, P.-T.
more authors

Anomaly-based intrusion detection systems classify network traffic instances by comparing them with a model of the normal network behavior. To be effective, such systems are expected to precisely detect intrusions (high true positive rate) while limiting the number of false alarms (low false positive rate). However, there exists a natural trade-off between detecting all anomalies (at the expense of raising alarms too often), and missing anomalies (but not issuing any false alarms). The parameters of a detection system play a central role in this trade-off, since they determine how responsive the system is to an intrusion attempt. Despite the importance of properly tuning the system parameters, the literature has put little emphasis on the topic, and the task of adjusting such parameters is usually left to the expertise of the system manager or expert IT personnel. In this paper, we present an autonomic approach for tuning the parameters of anomaly-based intrusion detection systems in case of SSH traffic. We propose a procedure that aims to automatically tune the system parameters and, by doing so, to optimize the system performance. We validate our approach by testing it on a flow-based probabilistic detection system for the detection of SSH attacks.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.