By Topic

Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saad, M.A. ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; Bovik, A.C. ; Charrier, C.

We develop an efficient general-purpose blind/no-reference image quality assessment (IQA) algorithm using a natural scene statistics (NSS) model of discrete cosine transform (DCT) coefficients. The algorithm is computationally appealing, given the availability of platforms optimized for DCT computation. The approach relies on a simple Bayesian inference model to predict image quality scores given certain extracted features. The features are based on an NSS model of the image DCT coefficients. The estimated parameters of the model are utilized to form features that are indicative of perceptual quality. These features are used in a simple Bayesian inference approach to predict quality scores. The resulting algorithm, which we name BLIINDS-II, requires minimal training and adopts a simple probabilistic model for score prediction. Given the extracted features from a test image, the quality score that maximizes the probability of the empirically determined inference model is chosen as the predicted quality score of that image. When tested on the LIVE IQA database, BLIINDS-II is shown to correlate highly with human judgments of quality, at a level that is competitive with the popular SSIM index.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 8 )