Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

The Application of High Energy Resolution Green's Functions to Threat Scenario Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thoreson, G.G. ; Dept. of Nucl. & Radiat. Eng., Univ. of Texas, Austin, TX, USA ; Schneider, E.A.

Radiation detectors installed at key interdiction points provide defense against nuclear smuggling attempts by scanning vehicles and traffic for illicit nuclear material. These hypothetical threat scenarios may be modeled using radiation transport simulations. However, high-fidelity models are computationally intensive. Furthermore, the range of smuggler attributes and detector technologies create a large problem space not easily overcome by brute-force methods. Previous research has demonstrated that decomposing the scenario into independently simulated components using Green's functions can simulate photon detector signals with coarse energy resolution. This paper extends this methodology by presenting physics enhancements and numerical treatments which allow for an arbitrary level of energy resolution for photon transport. As a result, spectroscopic detector signals produced from full forward transport simulations can be replicated while requiring multiple orders of magnitude less computation time.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 2 )