By Topic

Evaluation of Iron Core Quality for Resistance Spot Welding Transformers Using Current Controlled Supply

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Petrun, M. ; Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia ; Klopcic, B. ; Polajzer, B. ; Dolinar, D.

This paper reflects a newly developed method for evaluation of iron core quality for resistance spot welding (RSW) transformers. The classical methods for determination of the iron core quality are mostly based on a sinusoidal excitation. The proposed method is based on corresponding excitation by hysteresis controlled current in primary winding under no load operation, whereas consequently the primary current changes between its maximum and minimum value. Therefore, the operation point during the test is defined by the maximum magneto motive force (mmf) of the magnetic circuit. The tested iron core that reaches higher value of the magnetic flux density with the same maximum mmf, has lower average magnetic resistance and it is categorized as a better one, for the discussed RSW application. Furthermore, the value of the input reactive power is considered as an additional indicator for evaluation of the iron core quality. The proposed method is fully verified with numerical computations and laboratory measurements. The main advantage of the proposed method is that no extra equipment is required when testing the RSW systems.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 4 )