By Topic

Magnetization Reversal of Rectangular Particles: Closure States and Effect of Dipolar Coupling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bisero, D. ; Dipt. di Fis., Univ. di Ferrara, Ferrara, Italy ; Cremon, P. ; Madami, M. ; Tacchi, S.
more authors

We have investigated the magnetization configurations of ferromagnetic rectangular particles with lateral dimensions 1025 × 450 nm2 and two different thicknesses: 10 and 40 nm. For each thickness, we analyzed both an array consisting of isolated particles and a second one where the nanomagnets are put head-to-tail, with 85 nm interdot spacing, forming long chains of closely-spaced elements. Magneto-optical Kerr effect measurements and in-field magnetic force microscopy experiments were performed to achieve a deep comprehension of the magnetization reversal process. It is shown that inter-particle dipolar coupling substantially modifies the reversal mechanism in the case of the largest thickness, where it can delay or even suppress the occurrence of closure configurations of the magnetization (with one or more vortices), that are typical of isolated nanomagnets.

Published in:

Magnetics, IEEE Transactions on  (Volume:48 ,  Issue: 4 )