By Topic

Group-Ordered SPRT for Decentralized Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yingwei Yao ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA

The problem of decentralized detection in a large wireless sensor network is considered. An adaptive decentralized detection scheme, group-ordered sequential probability ratio test (GO-SPRT), is proposed. This scheme groups sensors according to the informativeness of their data. Fusion center collects sensor data sequentially, starting from the most informative data and terminates the process when the target performance is reached. Wald's approximations are shown to be applicable even though the problem setting deviates from that of the traditional sequential probability ratio test (SPRT). To analyze the efficiency of GO-SPRT, the asymptotic equivalence between the average sample number of GO-SPRT, which is a function of a multinomial random variable, and a function of a normal random variable, is established. Closed-form approximations for the average sample number are then obtained. Compared with fixed sample size test and traditional SPRT, the proposed scheme achieves significant savings in the cost of data fusion.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 6 )