Cart (Loading....) | Create Account
Close category search window

A Novel Approach to Detect Accurate Breast Boundary in Digital Mammogram Using Binary Homogeinity Enhancement Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maitra, I.K. ; Dept. of Comput. Sci. & Eng., Univ. of Calcutta, Kolkata, India ; Nag, S. ; Bandyopadhyay, S.K. ; Tai-hoon Kim

Computer Aided Diagnosis (CAD) systems have improved diagnosis of abnormalities in mammogram images. The principal feature within the breast region is the breast contour. Extraction of the breast region and delineation of the breast contour allows the search for abnormalities to be limited to the region of the breast without undue influence from the background of the mammogram. After performing an essential pre-processing step to suppress artifacts and accentuate the breast region, the exact breast region as the region of interest (ROI), has to be segmented. In this paper we present a fully automated segmentation and boundary detection method for mammographic images. In this research paper we have proposed a new homogeneity enhancement process namely Binary Homogeneity Enhancement Algorithm (BHEA) for digital mammogram. This is followed by a novel approach for edge detection (EDA) and finally obtaining the breast boundary by using our proposed Breast Border Boundary Enhancement Algorithm. This composite method have been implemented and applied to mini-MIAS, one of the most well-known mammographic databases consisting of 322 mediolateral oblique (MLO) view obtained via a digitization procedure. To demonstrate the capability of our segmentation algorithm it was extensively tested on mammograms using ground truth images and quantitative metrics to evaluate its performance characteristics. The experimental results indicate that the breast boundary regions were extracted accurately characterize the corresponding ground truth images. The algorithm is fully autonomous, and is able to preserve skin and nipple (if in profile), a task very few existing mammogram segmentation algorithms can claim.

Published in:

Ubiquitous Computing and Multimedia Applications (UCMA), 2011 International Conference on

Date of Conference:

13-15 April 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.