By Topic

Opportunistic Cooperation in Cognitive Femtocell Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahul Urgaonkar ; Network Research Department, Raytheon BBN Technologies, Cambridge, MA 02138 ; Michael J. Neely

We investigate opportunistic cooperation between secondary (femtocell) users and primary (macrocell) users in cognitive femtocell networks. We consider two models for such cooperation. In the first model, called the Cooperative Relay Model, a secondary user cannot transmit its own data concurrently with a primary user. However, it can employ cooperative relaying of primary user data in order to improve the latter's effective transmission rate. In the second model, called the Interference Model, a secondary user is allowed to transmit its data concurrently with a primary user. However, the secondary user can "cooperate" by deferring its transmissions when the primary user is busy. In both models, the secondary users must make intelligent cooperation decisions as they seek to maximize their own throughput subject to average power constraints. The decision options are different during idle and busy periods of the primary user, and the decisions in turn influence the durations of these periods according to a controllable infinite state Markov chain. Such problems can be formulated as constrained Markov decision problems, and conventional solution techniques require either extensive knowledge of the system dynamics or learning based approaches that suffer from large convergence times. However, using a generalized Lyapunov optimization technique, we design a novel greedy and online control algorithm that overcomes these challenges. Remarkably, this algorithm does not require any knowledge of the network arrival rates and is provably optimal.

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:30 ,  Issue: 3 )