By Topic

Spatial Domain Green's Functions of Layered Media Using a New Method for Sommerfeld Integrals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dhanesh G. Kurup ; Department of Electronics and Communication Engineering, New Horizon College of Engineering, Visveswaraya Technological University, Bangalore, India

A simplified approach for accurate and efficient computation of infinite domain Sommerfeld integrals (SI) associated with spatial domain Green's functions of layered media is described in this article. Integrand in SI excluding Bessel function is expressed as sum of complex exponentials using the matrix pencil method (MPM) which requires fewer terms than when we include oscillating Bessel functions. By using a novel three term representation for small arguments and classical large argument formulas of Bessel functions, analytical expressions for computing integrals along infinite domain SI tails are derived. The newly derived analytical formulas use the same MPM expansions for any given set of radial distance parameter ρ, enabling us to efficiently solve closed form Green's functions in layered media.

Published in:

IEEE Microwave and Wireless Components Letters  (Volume:22 ,  Issue: 4 )