By Topic

Characterization of Meander Dipole Antennas With a Geometry-Based, Frequency-Independent Lumped Element Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Olaode, O.O. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Palmer, W.D. ; Joines, W.T.

Meander antennas have gained widespread use in applications such as radio frequency identification (RFID) devices where space for the antenna is limited or a low-frequency operation is required. Several size-reduction and synthesis methods have been proposed over time. However, few studies have focused on developing models to characterize the operation of meander antennas. In addition, existing models are frequency-dependent, which means that they are inherently narrowband. An alternative model that is based entirely on the geometry of a meander dipole antenna (MDA) and is frequency-independent is proposed. To enhance the accuracy of the proposed model, the effect of mutual capacitances introduced through bending of the antenna wire is incorporated. The mutual capacitances are also a function of the antenna geometry. This model is expected to be more broadband relative to existing models. The equivalent circuit model proposed is validated through comparison to numerical simulations in EMCoS, a moment-method-based software package. The discrepancies between predictions of the resonant frequencies of MDAs with our model and simulation results are found to be less than 3%. Two classes of meander dipole antennas are introduced.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:11 )