Cart (Loading....) | Create Account
Close category search window

Thermal Phase Noise Measurements in Optical Fiber Interferometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bartolo, R.E. ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Tveten, A.B. ; Dandridge, A.

We present measurement data of fundamental thermal noise in a 40-m fiber optic Mach-Zehnder interferometer (MZI) using 80-μm-diameter optical fiber. To extend the measurements to low frequencies (below 500 Hz), the experimental setup is carefully designed to minimize ambient noise, thermal drift, and the phase and amplitude noise of the lasers. These experimental results are compared with theoretical predictions for the magnitude of the fundamental thermal noise in fiber, due to both thermodynamic temperature fluctuations and spontaneous length fluctuations. The experimental data, using two different solid-state lasers with two different emission wavelengths (1319 and 1550 nm), is in reasonable agreement with both theories over frequencies ranging from 20 Hz to 100 kHz. In terms of strain resolution, this paper demonstrates a fundamental thermal noise limit of approximately one femtostrain/rt(Hz) for a 40-m fiber optic MZI.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:48 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.