By Topic

Efficient and Effective Duplicate Detection in Hierarchical Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Although there is a long line of work on identifying duplicates in relational data, only a few solutions focus on duplicate detection in more complex hierarchical structures, like XML data. In this paper, we present a novel method for XML duplicate detection, called XMLDup. XMLDup uses a Bayesian network to determine the probability of two XML elements being duplicates, considering not only the information within the elements, but also the way that information is structured. In addition, to improve the efficiency of the network evaluation, a novel pruning strategy, capable of significant gains over the unoptimized version of the algorithm, is presented. Through experiments, we show that our algorithm is able to achieve high precision and recall scores in several data sets. XMLDup is also able to outperform another state-of-the-art duplicate detection solution, both in terms of efficiency and of effectiveness.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:25 ,  Issue: 5 )