By Topic

Scalable Multivariate Volume Visualization and Analysis Based on Dimension Projection and Parallel Coordinates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hanqi Guo ; Key Lab. of Machine Perception, Peking Univ., Beijing, China ; He Xiao ; Xiaoru Yuan

In this paper, we present an effective and scalable system for multivariate volume data visualization and analysis with a novel transfer function interface design that tightly couples parallel coordinates plots (PCP) and MDS-based dimension projection plots. In our system, the PCP visualizes the data distribution of each variate (dimension) and the MDS plots project features. They are integrated seamlessly to provide flexible feature classification without context switching between different data presentations during the user interaction. The proposed interface enables users to identify relevant correlation clusters and assign optical properties with lassos, magic wand, and other tools. Furthermore, direct sketching on the volume rendered images has been implemented to probe and edit features. With our system, users can interactively analyze multivariate volumetric data sets by navigating and exploring feature spaces in unified PCP and MDS plots. To further support large-scale multivariate volume data visualization and analysis, Scalable Pivot MDS (SPMDS), parallel adaptive continuous PCP rendering, as well as parallel rendering techniques are developed and integrated into our visualization system. Our experiments show that the system is effective in multivariate volume data visualization and its performance is highly scalable for data sets with different sizes and number of variates.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 9 )