By Topic

Fast Channel Zapping with Destination-Oriented Multicast for IP Video Delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohua Tian ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Yu Cheng ; Xuemin Shen

Channel zapping time is a critical quality of experience (QoE) metric for IP-based video delivery systems such as IPTV. An interesting zapping acceleration scheme based on time-shifted subchannels (TSS) was recently proposed, which can ensure a zapping delay bound as well as maintain the picture quality during zapping. However, the behaviors of the TSS-based scheme have not been fully studied yet. Furthermore, the existing TSS-based implementation adopts the traditional IP multicast, which is not scalable for a large-scale distributed system. Corresponding to such issues, this paper makes contributions in two aspects. First, we resort to theoretical analysis to understand the fundamental properties of the TSS-based service model. We show that there exists an optimal subchannel data rate which minimizes the redundant traffic transmitted over subchannels. Moreover, we reveal a start-up effect, where the existing operation pattern in the TSS-based model could violate the zapping delay bound. With a solution proposed to resolve the start-up effect, we rigorously prove that a zapping delay bound equal to the subchannel time shift is guaranteed by the updated TSS-based model. Second, we propose a destination-oriented-multicast (DOM) assisted zapping acceleration (DAZA) scheme for a scalable TSS-based implementation, where a subscriber can seamlessly migrate from a subchannel to the main channel after zapping without any control message exchange over the network. Moreover, the subchannel selection in DAZA is independent of the zapping request signaling delay, resulting in improved robustness and reduced messaging overhead in a distributed environment. We implement DAZA in ns-2 and multicast an MPEG-4 video stream over a practical network topology. Extensive simulation results are presented to demonstrate the validity of our analysis and DAZA scheme.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )