Cart (Loading....) | Create Account
Close category search window
 

Detecting Naturalistic Expressions of Nonbasic Affect Using Physiological Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
AlZoubi, O. ; Sch. of Electr. & Inf. Technol., Univ. of Sydney, Sydney, NSW, Australia ; D'Mello, S.K. ; Calvo, R.A.

Signals from peripheral physiology (e.g., ECG, EMG, and GSR) in conjunction with machine learning techniques can be used for the automatic detection of affective states. The affect detector can be user-independent, where it is expected to generalize to novel users, or user-dependent, where it is tailored to a specific user. Previous studies have reported some success in detecting affect from physiological signals, but much of the work has focused on induced affect or acted expressions instead of contextually constrained spontaneous expressions of affect. This study addresses these issues by developing and evaluating user-independent and user-dependent physiology-based detectors of nonbasic affective states (e.g., boredom, confusion, curiosity) that were trained and validated on naturalistic data collected during interactions between 27 students and AutoTutor, an intelligent tutoring system with conversational dialogues. There is also no consensus on which techniques (i.e., feature selection or classification methods) work best for this type of data. Therefore, this study also evaluates the efficacy of affect detection using a host of feature selection and classification techniques on three physiological signals (ECG, EMG, and GSR) and their combinations. Two feature selection methods and nine classifiers were applied to the problem of recognizing eight affective states (boredom, confusion, curiosity, delight, flow/-engagement, surprise, and neutral). The results indicated that the user-independent modeling approach was not feasible; however, a mean kappa score of 0.25 was obtained for user-dependent models that discriminated among the most frequent emotions. The results also indicated that k-nearest neighbor and Linear Bayes Normal Classifier (LBNC) classifiers yielded the best affect detection rates. Single channel ECG, EMG, and GSR and three-channel multimodal models were generally more diagnostic than two--channel models.

Published in:

Affective Computing, IEEE Transactions on  (Volume:3 ,  Issue: 3 )

Date of Publication:

July-September 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.