By Topic

AWNN-Assisted Wind Power Forecasting Using Feed-Forward Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhaskar, K. ; Dept. of Electr. Eng., Indian Inst. of Technol. Kanpur, Kanpur, India ; Singh, S.N.

With the growing wind power penetration in the emerging power system, an accurate wind power forecasting method is very much essential, to help the system operators, to include wind generation into economic scheduling, unit commitment, and reserve allocation problems. It also assists the wind power producers to maximize their benefits by bidding in the electricity markets. A statistical-based wind power forecasting without using numerical weather prediction (NWP) inputs is carried out in this work. The proposed approach consists of two stages. In stage-I, wavelet decomposition of wind series is carried out and adaptive wavelet neural network (AWNN) is used to regress upon each decomposed signal, to predict wind speed up to 30 h ahead. In stage-II, a feed-forward neural network (FFNN) is used for nonlinear mapping between wind speed and wind power output, which transforms the forecasted wind speed into wind power prediction. The effectiveness of the proposed method is compared with persistence (PER) and new-reference (NR) benchmark models and the results show that the proposed model outperforms the benchmark models.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:3 ,  Issue: 2 )