Cart (Loading....) | Create Account
Close category search window
 

Hybrid Dimensionality Reduction Method Based on Support Vector Machine and Independent Component Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sangwoo Moon ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA ; Hairong Qi

This paper presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) and data independence (unsupervised criterion). Classification accuracy is used as a metric to evaluate the performance of the method. By minimizing the structural risk, projection originated from the decision boundaries directly improves the classification performance from a supervised perspective. From an unsupervised perspective, projection can also be obtained based on maximum independence among features (or attributes) in data to indirectly achieve better classification accuracy over more intrinsic representation of the data. Orthogonality interrelates the two sets of projections such that minimum redundancy exists between the projections, leading to more effective dimensionality reduction. Experimental results show that the proposed hybrid dimensionality reduction method that satisfies both criteria simultaneously provides higher classification performance, especially for noisy data sets, in relatively lower dimensional space than various existing methods.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.