Cart (Loading....) | Create Account
Close category search window
 

Multiscale Classification of Remote Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
dos Santos, J.A. ; Inst. of Comput., Univ. of Campinas, Campinas, Brazil ; Gosselin, P.-H. ; Philipp-Foliguet, S. ; Torres, R.S.
more authors

A huge effort has been applied in image classification to create high-quality thematic maps and to establish precise inventories about land cover use. The peculiarities of remote sensing images (RSIs) combined with the traditional image classification challenges made RSI classification a hard task. Our aim is to propose a kind of boost-classifier adapted to multiscale segmentation. We use the paradigm of boosting, whose principle is to combine weak classifiers to build an efficient global one. Each weak classifier is trained for one level of the segmentation and one region descriptor. We have proposed and tested weak classifiers based on linear support vector machines (SVM) and region distances provided by descriptors. The experiments were performed on a large image of coffee plantations. We have shown in this paper that our approach based on boosting can detect the scale and set of features best suited to a particular training set. We have also shown that hierarchical multiscale analysis is able to reduce training time and to produce a stronger classifier. We compare the proposed methods with a baseline based on SVM with radial basis function kernel. The results show that the proposed methods outperform the baseline.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.