By Topic

Modeling of Different Winding Configurations for Fault-Tolerant Permanent Magnet Machines to Restrain Interturn Short-Circuit Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Puvan Arumugam ; Power Electronics, Machines and Control Group, Faculty of Engineering, The University of Nottingham, University Park, U.K. ; Tahar Hamiti ; Chris Gerada

This paper describes an analytical model to evaluate the short-circuit (SC) current resulting from an interturn fault by computing the self and mutual inductances under SC fault condition. Two different concentrated winding configurations, i.e., horizontally and vertically placed conductors in the slot of a fault-tolerant permanent magnet synchronous machine are considered. By computing the associated slot-leakage and air-gap fluxes, the self inductance of both healthy and faulty windings as well as the mutual inductance between them, the SC current can be determined for any position and number of shorted turns. The proposed model is verified with finite-element analysis and validated experimentally. It will be shown that the magnitude of an interturn SC current depends on both the number of shorted turns and their position in the slot. The measured SC inductance shows that a new proposed concentrated vertical winding configuration can inherently limit the SC current and reduce its dependence on the position within the slot.

Published in:

IEEE Transactions on Energy Conversion  (Volume:27 ,  Issue: 2 )