By Topic

Sufficient Conditions for Decentralized Potential Functions Based Controllers Using Canonical Vector Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dimarogonas, D.V. ; ACCESS Linnaeus Center, R. Inst. of Technol. (KTH), Stockholm, Sweden

A combination of dual Lyapunov analysis and properties of decentralized navigation function based controllers is used to check the stability properties of a certain class of decentralized controllers for navigation and collision avoidance in multiagent systems. The derived results yield a less conservative condition from previous approaches, which relates to the negativity of the sum of the minimum eigenvalues of the Hessian matrices at the critical points, instead of requiring each of the eigenvalues to be negative itself. This provides an improved characterization of the reachable set of this class of decentralized navigation function based controllers, which is less conservative than the previous results for the same class of controllers.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 10 )