Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Resource Allocation via Linear Programming for Fractional Cooperation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farsad, N. ; Dept. of Comput. Sci. & Eng., York Univ., Toronto, ON, Canada ; Eckford, A.W.

In this letter, resource allocation is considered for large multi-source, multi-relay networks employing fractional cooperation, in which each potential relay only allocates a fraction of its resources to relaying. Using a Gaussian approximation, it is shown that the optimization can be posed as a linear program, where the relays use a demodulate-and-forward (DemF) strategy, and where the transmissions are protected by low-density parity-check (LDPC) codes. This is useful since existing optimization schemes for this problem are nonconvex.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 5 )