By Topic

Achieving Global Optimality for Weighted Sum-Rate Maximization in the K-User Gaussian Interference Channel with Multiple Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Liu ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Rui Zhang ; Kee-Chaing Chua

Characterizing the global maximum of weighted sum-rate (WSR) for the K-user Gaussian interference channel (GIC), with the interference treated as Gaussian noise, is a key problem in wireless communication. However, due to the users' mutual interference, this problem is in general non-convex and thus cannot be solved directly by conventional convex optimization techniques. In this paper, by jointly utilizing the monotonic optimization and rate profile techniques, we develop a new framework to obtain the globally optimal power control and/or beamforming solutions to WSR maximization problems for the GICs with single-antenna transmitters and single-antenna receivers (SISO), single-antenna transmitters and multi-antenna receivers (SIMO), or multi-antenna transmitters and single-antenna receivers (MISO). Different from prior work, this paper proposes to maximize the WSR in the achievable rate region of the GIC directly by exploiting the facts that the achievable rate region is a "normal" set and the users' WSR is a strictly increasing function over the rate region. Consequently, the WSR maximization is shown to be in the form of monotonic optimization over a normal set and thus can be solved globally optimally by the existing outer polyblock approximation algorithm. However, an essential step in the algorithm hinges on how to efficiently characterize the intersection point on the Pareto boundary of the achievable rate region with any prescribed "rate profile" vector. This paper shows that such a problem can be transformed into a sequence of signal-to-interference-plus-noise ratio (SINR) feasibility problems, which can be solved efficiently by applying existing techniques. Numerical results validate that the proposed algorithms can achieve the global WSR maximum for the SISO, SIMO or MISO GIC, which serves as a performance benchmark for other heuristic algorithms.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 5 )