Cart (Loading....) | Create Account
Close category search window
 

A Comparison Study of Validity Indices on Swarm-Intelligence-Based Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rui Xu ; Machine Learning Lab., GE Global Res., Niskayuna, NY, USA ; Jie Xu ; Wunsch, D.C.

Swarm intelligence has emerged as a worthwhile class of clustering methods due to its convenient implementation, parallel capability, ability to avoid local minima, and other advantages. In such applications, clustering validity indices usually operate as fitness functions to evaluate the qualities of the obtained clusters. However, as the validity indices are usually data dependent and are designed to address certain types of data, the selection of different indices as the fitness functions may critically affect cluster quality. Here, we compare the performances of eight well-known and widely used clustering validity indices, namely, the Caliński-Harabasz index, the CS index, the Davies-Bouldin index, the Dunn index with two of its generalized versions, the I index, and the silhouette statistic index, on both synthetic and real data sets in the framework of differential-evolution-particle-swarm-optimization (DEPSO)-based clustering. DEPSO is a hybrid evolutionary algorithm of the stochastic optimization approach (differential evolution) and the swarm intelligence method (particle swarm optimization) that further increases the search capability and achieves higher flexibility in exploring the problem space. According to the experimental results, we find that the silhouette statistic index stands out in most of the data sets that we examined. Meanwhile, we suggest that users reach their conclusions not just based on only one index, but after considering the results of several indices to achieve reliable clustering structures.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.