Cart (Loading....) | Create Account
Close category search window
 

A 55-kW Three-Phase Inverter Based on Hybrid-Switch Soft-Switching Modules for High-Temperature Hybrid Electric Vehicle Drive Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pengwei Sun ; Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Jih-Sheng Lai ; Chuang Liu ; Wensong Yu

This paper presents a 55-kW three-phase inverter based on soft-switching modules for hybrid electric vehicle drives at high-temperature conditions. The main switch of the module is composed of the hybrid switch, which is composed of parallel IGBT and MOSFET. Highly integrated soft-switching modules have been employed to achieve switching loss as well as conduction loss reduction. The operation principle of the proposed inverter is analyzed in detail. Experimental evaluations of the inverter have been conducted through both inductive load and motor-dynamometer load at coolant temperatures ranging from 25°C to 90°C. Efficiency measurement using power meter showed that the peak efficiency is around 99%, and it drops slightly at lower speed and higher temperature conditions. To ensure measurement fidelity, a double-chamber differential calorimeter system was designed and calibrated for the inverter testing. Through long-hour testing, the measured efficiencies consistently showed 99% and higher. The soft-switching inverter has been operated reliably and demonstrated high efficiency at different temperature and test conditions.

Published in:

Industry Applications, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.