Cart (Loading....) | Create Account
Close category search window
 

Single-Mode Design Guidelines for 19-Cell Double-Cladding Photonic Crystal Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Coscelli, E. ; Inf. Eng. Dept., Univ. of Parma, Parma, Italy ; Poli, F. ; Alkeskjold, T.T. ; Salin, F.
more authors

Yb-doped double-cladding photonic crystal fibers have become key components for power scaling in fiber laser systems, by providing many advantages, especially an ultra large effective area. The single-mode regime, which is a mandatory requirement for high quality laser beams, can be obtained in such large core active fibers only through a careful design. In this paper the cut-off properties of 19-cell photonic crystal fibers have been thoroughly investigated with the avoided-crossing approach, in order to find guidelines for the design of single-mode fibers. The air-hole diameter and the core refractive index have been changed, as well as the number of air-hole rings in the fiber inner cladding. Simulation results have shown that, regardless of the air-hole ring number, the guided-mode cut-off properties are strongly influenced by the main design parameters, especially by the core refractive index. In particular, a wider single-mode wavelength range can be obtained in 19-cell fibers with small air-holes and low core refractive index. Moreover, double-cladding photonic crystal fibers with larger inner-cladding provide better guided-mode cut-off properties, which can have positive effects on the amplification process in practical applications.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 12 )

Date of Publication:

June15, 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.