By Topic

Locally one-dimensional finite-difference time-domain scheme for the full-wave semiconductor device analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Mirzavand ; Microwave/mm-wave and Wireless Communication Research Lab, Radio Communications Center of Excellence, Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran ; A. Abdipour ; W. H. A. Schilders ; G. Moradi
more authors

The application of an unconditionally stable locally one-dimensional finite-difference time-domain (LOD-FDTD) method for the full-wave simulation of semiconductor devices is described. The model consists of the electron equations for semiconductor devices in conjunction with Maxwell's equations for electromagnetic effects. Therefore the behaviour of an active device at high frequencies is described by considering the distributed effects, propagation delays, electron transmit time, parasitic elements and discontinuity effects. The LOD-FDTD method allows a larger Courant'Friedrich'Lewy number (CFLN) as long as the dispersion error remains in the acceptable range. Hence, it can lead to a significant time reduction in the very time consuming full-wave simulation. Numerical results show the efficiency of the presented approach.

Published in:

IET Science, Measurement & Technology  (Volume:6 ,  Issue: 2 )