By Topic

An efficient statistical method to estimate average power in sequential circuits considering input sensitivities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhanping Chen ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Roy, K.

Power dissipation in CMOS circuits is heavily dependent on the signal properties of the primary inputs. Due to uncertainties in specification of such properties, the average power should be specified between a maximum and a minimum possible value. In this paper, we present a novel statistical approach to accurately estimate the maximum and minimum bounds for average power of sequential circuits using a technique which estimates the sensitivities of average power dissipation to primary input signal properties. The signal properties are specified in terms of signal probability (probability of a signal being logic ONE) and signal activity (probability of signal switching). The sensitivities are obtained as a by-product of the statistical power estimation technique using a Monte Carlo based approach. Results show that the maximum and minimum average power dissipation can vary widely if the primary input probabilities and activities are not specified accurately

Published in:

ASIC Conference and Exhibit, 1997. Proceedings., Tenth Annual IEEE International

Date of Conference:

7-10 Sep 1997