By Topic

Impact of DC Line Voltage Drops on Power Flow of MTDC Using Droop Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haileselassie, T.M. ; Dept. of Electr. Power Eng., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; Uhlen, K.

This paper discusses the impact of dc transmission voltage drops on the distribution of dc grid balancing power when dc voltage droop control is applied. DC line voltage drops in a multiterminal VSC-HVDC (MTDC) system result in nonuniform variations of dc bus voltages when changes in dc grid power flow occur. This in turn affects the distribution of instantaneous balancing power in a MTDC that uses dc voltage droop control. The values of dc voltage droop constants determine the degree of impact that dc voltage drops will have on the sharing of balancing power in the dc grid. In this paper, an analytical expression for estimating the distribution of balancing power which accounts for dc line voltage drops is derived. A five-terminal MTDC was modelled in PSCAD for demonstrating the effects of dc line voltage drops as well as for validating the proposed analytical expression which estimates balancing power distribution.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 3 )