Cart (Loading....) | Create Account
Close category search window
 

Combined Acoustic MIMO Channel Crosstalk Cancellation and Room Impulse Response Reshaping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jungmann, J.O. ; Inst. for Signal Process., Univ. of Lubeck, Lübeck, Germany ; Mazur, R. ; Kallinger, M. ; Tiemin Mei
more authors

Virtual 3-D sound can be easily delivered to a listener by binaural audio signals that are reproduced via headphones, which guarantees that only the correct signals reach the corresponding ears. Reproducing the binaural audio signal by two or more loudspeakers introduces the problems of crosstalk on the one hand, and, of reverberation on the other hand. In crosstalk cancellation, the audio signals are fed through a network of prefilters prior to loudspeaker reproduction to ensure that only the designated signal reaches the corresponding ear of the listener. Since room impulse responses are very sensitive to spatial mismatch, and since listeners might slightly move while listening, robust designs are needed. In this paper, we present a method that jointly handles the three problems of crosstalk, reverberation reduction, and spatial robustness with respect to varying listening positions for one or more binaural source signals and multiple listeners. The proposed method is based on a multichannel room impulse response reshaping approach by optimizing a -norm based criterion. Replacing the well-known least-squares technique by a -norm based method employing a large value for allows us to explicitly control the amount of crosstalk and to shape the remaining reverberation effects according to a desired decay.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.