By Topic

A low power high speed error correction code macro using complementary pass transistor logic circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, L.K. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Chen, H.H.

This paper describes the design and implementation of the complementary pass transistor logic (CPL) circuit in a CMOS macro design. The power, speed and noise margin of pass-transistor logic circuits are evaluated and the transistor sizes are optimized for noise margin and circuit performance. This circuit has been successfully implemented in a 64-bit Error Correction Code (ECC) and parity checking macro in the IBM S/390 CMOS processor and significantly improves the power and speed of the ECC macro performance

Published in:

ASIC Conference and Exhibit, 1997. Proceedings., Tenth Annual IEEE International

Date of Conference:

7-10 Sep 1997