By Topic

Dynamic Serialization: Improving Energy Consumption in Eager-Eager Hardware Transactional Memory Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In the search for new paradigms to simplify multithreaded programming, Transactional Memory (TM) is currently being advocated as a promising alternative to deadlock-prone lock-based synchronization. In this way, future many-core CMP architectures may need to provide hardware support for TM. On the other hand, power dissipation constitutes a first class consideration in multicore processor designs. In this work, we propose Dynamic Serialization (DS) as a new technique to improve energy consumption without degrading performance in applications with conflicting transactions. Our proposal, which is implemented on top of a hardware transactional memory system with an eager conflict management policy, detects and serializes conflicting transactions dynamically. Particularly, in case of conflict one transaction is allowed to continue whilst the rest are completely stalled. Once the executing transaction has finished it wakes up several of the stalling transactions. This brings important benefits in terms of energy consumption due to the reduction in the amount of wasted work that DS implies. Results for a 16-core CMP show that Dynamic Serialization obtains reductions of 10% on average in energy consumption (more than 20% in high contention scenarios) without affecting, on average, execution time.

Published in:

Parallel, Distributed and Network-Based Processing (PDP), 2012 20th Euromicro International Conference on

Date of Conference:

15-17 Feb. 2012