Cart (Loading....) | Create Account
Close category search window
 

Efficient cancer therapy using Boolean networks and Max-SAT-based ATPG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lin, P.-C.K. ; Dept. of ECE, Texas A&M Univ., College Station, TX, USA ; Khatri, S.P.

Cancer and other gene related diseases are usually caused by a failure in the signaling pathway between genes and cells. These failures can occur in different areas of the gene regulatory network, but can be abstracted as faults in the regulatory function. For effective cancer treatment, it is imperative to identify faults and select appropriate drugs to treat the fault. In this paper, we present an extensible Max-SAT based automatic test pattern generation (ATPG) algorithm for cancer therapy. This ATPG algorithm is based on Boolean Satisfiability (SAT) and utilizes the stuck-at fault model for representing signalling faults. A weighted partial Max-SAT formulation is used to enable selection of the most effective drug. Several usage cases as presented for fault identification and drug selection. These include the identification of testable faults, optimal drug selection for single/multiple known faults, and optimal drug selection for overall fault coverage. Experimental results on growth factor (GF) signaling pathways demonstrate that our algorithm is flexible, and can yield an exact solution for each feature in much less than 1 second.

Published in:

Genomic Signal Processing and Statistics (GENSIPS), 2011 IEEE International Workshop on

Date of Conference:

4-6 Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.