By Topic

On Gaussian MIMO BC-MAC Duality With Multiple Transmit Covariance Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lan Zhang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Rui Zhang ; Ying-Chang Liang ; Yan Xin
more authors

Owing to the special structure of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC), the associated capacity region computation and beamforming optimization problems are typically non-convex, and thus cannot be solved directly. One feasible approach is to consider the respective dual multiple-access channel (MAC) problems, which are easier to deal with due to their convexity properties. The conventional BC-MAC duality has been established via BC-MAC signal transformation, and is applicable only for the case in which the MIMO BC is subject to a single transmit sum-power constraint. An alternative approach is based on minimax duality, which can be applied to the case of the sum-power constraint or per-antenna power constraint. In this paper, the conventional BC-MAC duality is extended to the general linear transmit covariance constraint (LTCC) case, which includes sum-power and per-antenna power constraints as special cases. The obtained general BC-MAC duality is applied to solve the capacity region computation for the MIMO BC and beamforming optimization for the multiple-input single-output (MISO) BC, respectively, with multiple LTCCs. The relationship between this new general BC-MAC duality and the minimax duality is also discussed, and it is shown that the general BC-MAC duality leads to simpler problem formulations. Moreover, the general BC-MAC duality is extended to deal with the case of nonlinear transmit covariance constraints in the MIMO BC.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 4 )